Skip to contents

This function calculates the degree distribution of the network. First it fits exponential, power law and truncated power law distribution models, and calculates the AIC values to select the best fit, and finally it plots the degree distribution in a log log scale showing the three fitted models mentioned above against the observed distribution.

Usage

DegreeDistribution(Network, scale = "arithmetic")

Arguments

Network

a trophic network of class network

scale

a character stating if the graph is on a log-log scale ("LogLog") or arithmetic scale ("arithmetic"), defaults to arithmetic

Value

exports three principal results: 1. A list with network degree distribution values and with the value of each fit model 2. A list with each model results and AIC of the distribution models 3. A Ghraph of the degree distribution with the models adjust In DDvalues, k represent the degree of the network and cumulative the probability that each specie could be have this degree (pk). Observation: In the graph, the zero values are not represented but this result are incorporate in the DF result

Author

Derek Corcoran <derek.corcoran.barrios@gmail.com>

M.Isidora Avila Thieme <msavila@uc.cl>

Examples

library(NetworkExtinction)
data("chilean_intertidal")
DegreeDistribution(chilean_intertidal)
#> Joining with `by = join_by(K, Cumulative, LogK, LogCum, Exp)`
#> Joining with `by = join_by(K, Cumulative, LogK, LogCum, Exp, LogExp, LogPower)`
#> Joining with `by = join_by(sigma, isConv, finTol, logLik, AIC, BIC, deviance,
#> df.residual, nobs, model, Normal.Resid, family, AICcNorm)`
#> Joining with `by = join_by(logLik, AIC, BIC, deviance, df.residual, nobs,
#> model, Normal.Resid, family, AICcNorm)`
#> Joining with `by = join_by(logLik, AIC, BIC, deviance, df.residual, nobs,
#> model, Normal.Resid, family, AICcNorm, null.deviance, df.null)`
#> $DDvalues
#>     K  Cumulative      LogK      LogCum        Exp     LogExp   LogPower
#> 1   0 1.000000000      -Inf  0.00000000 1.17799969         NA         NA
#> 2   1 1.000000000 0.0000000  0.00000000 1.12910049 1.83049523 9.44903010
#> 3   2 1.000000000 0.6931472  0.00000000 1.08223112 1.70946324 4.12868593
#> 4   3 0.943925234 1.0986123 -0.05770832 1.03730731 1.59643387 2.54374592
#> 5   4 0.934579439 1.3862944 -0.06765865 0.99424830 1.49087797 1.80399970
#> 6   5 0.915887850 1.6094379 -0.08786136 0.95297669 1.39230142 1.38190772
#> 7   6 0.906542056 1.7917595 -0.09811786 0.91341828 1.30024272 1.11147154
#> 8   7 0.906542056 1.9459101 -0.09811786 0.87550195 1.21427093 0.92455235
#> 9   8 0.897196262 2.0794415 -0.10848064 0.83915954 1.13398357 0.78824473
#> 10  9 0.869158879 2.1972246 -0.14022934 0.80432572 1.05900480 0.68479445
#> 11 10 0.859813084 2.3025851 -0.15104026 0.77093787 0.98898361 0.60381467
#> 12 11 0.822429907 2.3978953 -0.19549202 0.73893595 0.92359221 0.53884118
#> 13 12 0.785046729 2.4849066 -0.24201204 0.70826245 0.86252447 0.48564952
#> 14 13 0.757009346 2.5649494 -0.27837968 0.67886222 0.80549453 0.44136734
#> 15 14 0.728971963 2.6390573 -0.31612001 0.65068240 0.75223539 0.40397652
#> 16 15 0.691588785 2.7080502 -0.36876374 0.62367233 0.70249773 0.37201936
#> 17 16 0.663551402 2.7725887 -0.41014896 0.59778347 0.65604872 0.34441788
#> 18 17 0.663551402 2.8332133 -0.41014896 0.57296925 0.61267091 0.32035847
#> 19 18 0.626168224 2.8903718 -0.46813622 0.54918509 0.57216123 0.29921602
#> 20 19 0.588785047 2.9444390 -0.52969411 0.52638822 0.53433004 0.28050271
#> 21 20 0.588785047 2.9957323 -0.52969411 0.50453765 0.49900024 0.26383249
#> 22 21 0.570093458 3.0445224 -0.56195497 0.48359411 0.46600644 0.24889605
#> 23 22 0.560747664 3.0910425 -0.57848427 0.46351994 0.43519419 0.23544279
#> 24 23 0.542056075 3.1354942 -0.61238582 0.44427905 0.40641923 0.22326760
#> 25 24 0.495327103 3.1780538 -0.70253692 0.42583687 0.37954688 0.21220107
#> 26 25 0.495327103 3.2188758 -0.70253692 0.40816022 0.35445131 0.20210211
#> 27 26 0.467289720 3.2580965 -0.76080583 0.39121734 0.33101506 0.19285229
#> 28 27 0.420560748 3.2958369 -0.86616634 0.37497777 0.30912841 0.18435152
#> 29 28 0.420560748 3.3322045 -0.86616634 0.35941230 0.28868890 0.17651464
#> 30 29 0.383177570 3.3672958 -0.95925677 0.34449297 0.26960085 0.16926877
#> 31 30 0.327102804 3.4011974 -1.11748077 0.33019294 0.25177489 0.16255119
#> 32 31 0.299065421 3.4339872 -1.20709293 0.31648651 0.23512758 0.15630763
#> 33 32 0.299065421 3.4657359 -1.20709293 0.30334904 0.21958099 0.15049092
#> 34 33 0.299065421 3.4965076 -1.20709293 0.29075691 0.20506234 0.14505987
#> 35 34 0.289719626 3.5263605 -1.23884163 0.27868748 0.19150366 0.13997833
#> 36 35 0.271028037 3.5553481 -1.30553300 0.26711906 0.17884148 0.13521452
#> 37 36 0.242990654 3.5835189 -1.41473230 0.25603085 0.16701651 0.13074029
#> 38 37 0.205607477 3.6109179 -1.58178638 0.24540292 0.15597341 0.12653074
#> 39 38 0.186915888 3.6375862 -1.67709656 0.23521615 0.14566048 0.12256365
#> 40 39 0.140186916 3.6635616 -1.96477863 0.22545224 0.13602944 0.11881922
#> 41 40 0.130841121 3.6888795 -2.03377150 0.21609364 0.12703520 0.11527971
#> 42 41 0.102803738 3.7135721 -2.27493356 0.20712351 0.11863566 0.11192920
#> 43 42 0.102803738 3.7376696 -2.27493356 0.19852574 0.11079149 0.10875334
#> 44 43 0.093457944 3.7612001 -2.37024374 0.19028486 0.10346598 0.10573919
#> 45 44 0.093457944 3.7841896 -2.37024374 0.18238607 0.09662483 0.10287504
#> 46 45 0.093457944 3.8066625 -2.37024374 0.17481516 0.09023601 0.10015025
#> 47 46 0.093457944 3.8286414 -2.37024374 0.16755852 0.08426963 0.09755518
#> 48 47 0.084112150 3.8501476 -2.47560426 0.16060310 0.07869774 0.09508101
#> 49 48 0.084112150 3.8712010 -2.47560426 0.15393641 0.07349426 0.09271974
#> 50 49 0.084112150 3.8918203 -2.47560426 0.14754645 0.06863483 0.09046400
#> 51 50 0.084112150 3.9120230 -2.47560426 0.14142174 0.06409671 0.08830707
#> 52 51 0.084112150 3.9318256 -2.47560426 0.13555127 0.05985865 0.08624277
#> 53 52 0.074766355 3.9512437 -2.59338729 0.12992449 0.05590081 0.08426543
#> 54 53 0.074766355 3.9702919 -2.59338729 0.12453128 0.05220466 0.08236980
#> 55 54 0.074766355 3.9889840 -2.59338729 0.11936194 0.04875289 0.08055108
#> 56 55 0.074766355 4.0073332 -2.59338729 0.11440718 0.04552936 0.07880478
#> 57 56 0.056074766 4.0253517 -2.88106937 0.10965810 0.04251897 0.07712681
#> 58 57 0.046728972 4.0430513 -3.06339092 0.10510615 0.03970762 0.07551332
#> 59 58 0.046728972 4.0604430 -3.06339092 0.10074315 0.03708216 0.07396078
#> 60 59 0.037383178 4.0775374 -3.28653447 0.09656127 0.03463030 0.07246588
#> 61 60 0.018691589 4.0943446 -3.97968165 0.09255298 0.03234055 0.07102558
#> 62 61 0.018691589 4.1108739 -3.97968165 0.08871107 0.03020220 0.06963700
#> 63 62 0.018691589 4.1271344 -3.97968165 0.08502864 0.02820524 0.06829750
#> 64 63 0.009345794 4.1431347 -4.67282883 0.08149907 0.02634031 0.06700458
#> 65 64 0.009345794 4.1588831 -4.67282883 0.07811601 0.02459869 0.06575593
#> 66 65 0.009345794 4.1743873 -4.67282883 0.07487339 0.02297223 0.06454937
#> 67 66 0.009345794 4.1896547 -4.67282883 0.07176537 0.02145331 0.06338287
#> 68 67 0.000000000 4.2046926        -Inf 0.06878636         NA         NA
#>        Power
#> 1         NA
#> 2  1.5397399
#> 3  1.1281356
#> 4  0.9404615
#> 5  0.8265616
#> 6  0.7478031
#> 7  0.6890567
#> 8  0.6430028
#> 9  0.6056046
#> 10 0.5744268
#> 11 0.5478999
#> 12 0.5249602
#> 13 0.5048576
#> 14 0.4870455
#> 15 0.4711148
#> 16 0.4567525
#> 17 0.4437140
#> 18 0.4318054
#> 19 0.4208706
#> 20 0.4107822
#> 21 0.4014349
#> 22 0.3927412
#> 23 0.3846275
#> 24 0.3770311
#> 25 0.3698987
#> 26 0.3631844
#> 27 0.3568482
#> 28 0.3508555
#> 29 0.3451761
#> 30 0.3397832
#> 31 0.3346531
#> 32 0.3297650
#> 33 0.3251001
#> 34 0.3206417
#> 35 0.3163749
#> 36 0.3122862
#> 37 0.3083632
#> 38 0.3045950
#> 39 0.3009716
#> 40 0.2974837
#> 41 0.2941231
#> 42 0.2908819
#> 43 0.2877534
#> 44 0.2847309
#> 45 0.2818086
#> 46 0.2789810
#> 47 0.2762429
#> 48 0.2735898
#> 49 0.2710172
#> 50 0.2685210
#> 51 0.2660977
#> 52 0.2637435
#> 53 0.2614553
#> 54 0.2592299
#> 55 0.2570646
#> 56 0.2549566
#> 57 0.2529034
#> 58 0.2509026
#> 59 0.2489521
#> 60 0.2470497
#> 61 0.2451934
#> 62 0.2433814
#> 63 0.2416120
#> 64 0.2398834
#> 65 0.2381941
#> 66 0.2365426
#> 67 0.2349276
#> 68        NA
#> 
#> $models
#> # A tibble: 4 × 6
#>   logLik    AIC    BIC model    Normal.Resid family     
#>    <dbl>  <dbl>  <dbl> <chr>    <chr>        <chr>      
#> 1   83.1 -160.  -154.  Exp      No           Exponential
#> 2   13.4  -20.8  -14.2 Power    No           PowerLaw   
#> 3  -27.5   61.0   67.5 LogExp   No           Exponential
#> 4  -80.8  168.   174.  LogPower No           PowerLaw   
#> 
#> $graph
#> Warning: Removed 20 rows containing missing values or values outside the scale range
#> (`geom_line()`).

#> 
#> $params
#> # A tibble: 8 × 6
#>   term   estimate std.error statistic  p.value model   
#>   <chr>     <dbl>     <dbl>     <dbl>    <dbl> <chr>   
#> 1 c        2.25     0.384        5.84 1.87e- 7 LogPower
#> 2 Beta    -1.19     0.114      -10.4  1.90e-15 LogPower
#> 3 Beta    -0.449    0.0402     -11.2  1.13e-16 Power   
#> 4 c        1.54     0.150       10.3  3.63e-15 Power   
#> 5 c        0.673    0.0928       7.25 6.68e-10 LogExp  
#> 6 Lambda  -0.0684   0.00241    -28.4  5.33e-38 LogExp  
#> 7 Lambda  -0.0424   0.00157    -27.0  2.31e-37 Exp     
#> 8 c        0.164    0.0247       6.63 7.39e- 9 Exp     
#>