03/11, 2020
Aleatorias
| Plant | Type | Treatment | conc | uptake |
|---|---|---|---|---|
| Qn1 | Quebec | nonchilled | 95 | 16.0 |
| Qn1 | Quebec | nonchilled | 175 | 30.4 |
| Qn1 | Quebec | nonchilled | 250 | 34.8 |
| Qn1 | Quebec | nonchilled | 350 | 37.2 |
| Qn1 | Quebec | nonchilled | 500 | 35.3 |
| Qn1 | Quebec | nonchilled | 675 | 39.2 |
| Qn1 | Quebec | nonchilled | 1000 | 39.7 |
| Qn2 | Quebec | nonchilled | 95 | 13.6 |
| Qn2 | Quebec | nonchilled | 175 | 27.3 |
| Qn2 | Quebec | nonchilled | 250 | 37.1 |
| Qn2 | Quebec | nonchilled | 350 | 41.8 |
| Qn2 | Quebec | nonchilled | 500 | 40.6 |
| Qn2 | Quebec | nonchilled | 675 | 41.4 |
| Qn2 | Quebec | nonchilled | 1000 | 44.3 |
| Qn3 | Quebec | nonchilled | 95 | 16.2 |
| Qn3 | Quebec | nonchilled | 175 | 32.4 |
| Qn3 | Quebec | nonchilled | 250 | 40.3 |
| Qn3 | Quebec | nonchilled | 350 | 42.1 |
| Qn3 | Quebec | nonchilled | 500 | 42.9 |
| Qn3 | Quebec | nonchilled | 675 | 43.9 |
| Qn3 | Quebec | nonchilled | 1000 | 45.5 |
| Qc1 | Quebec | chilled | 95 | 14.2 |
| Qc1 | Quebec | chilled | 175 | 24.1 |
| Qc1 | Quebec | chilled | 250 | 30.3 |
| Qc1 | Quebec | chilled | 350 | 34.6 |
| Qc1 | Quebec | chilled | 500 | 32.5 |
| Qc1 | Quebec | chilled | 675 | 35.4 |
| Qc1 | Quebec | chilled | 1000 | 38.7 |
| Qc2 | Quebec | chilled | 95 | 9.3 |
| Qc2 | Quebec | chilled | 175 | 27.3 |
| Qc2 | Quebec | chilled | 250 | 35.0 |
| Qc2 | Quebec | chilled | 350 | 38.8 |
| Qc2 | Quebec | chilled | 500 | 38.6 |
| Qc2 | Quebec | chilled | 675 | 37.5 |
| Qc2 | Quebec | chilled | 1000 | 42.4 |
| Qc3 | Quebec | chilled | 95 | 15.1 |
| Qc3 | Quebec | chilled | 175 | 21.0 |
| Qc3 | Quebec | chilled | 250 | 38.1 |
| Qc3 | Quebec | chilled | 350 | 34.0 |
| Qc3 | Quebec | chilled | 500 | 38.9 |
| Qc3 | Quebec | chilled | 675 | 39.6 |
| Qc3 | Quebec | chilled | 1000 | 41.4 |
| Mn1 | Mississippi | nonchilled | 95 | 10.6 |
| Mn1 | Mississippi | nonchilled | 175 | 19.2 |
| Mn1 | Mississippi | nonchilled | 250 | 26.2 |
| Mn1 | Mississippi | nonchilled | 350 | 30.0 |
| Mn1 | Mississippi | nonchilled | 500 | 30.9 |
| Mn1 | Mississippi | nonchilled | 675 | 32.4 |
| Mn1 | Mississippi | nonchilled | 1000 | 35.5 |
| Mn2 | Mississippi | nonchilled | 95 | 12.0 |
| Mn2 | Mississippi | nonchilled | 175 | 22.0 |
| Mn2 | Mississippi | nonchilled | 250 | 30.6 |
| Mn2 | Mississippi | nonchilled | 350 | 31.8 |
| Mn2 | Mississippi | nonchilled | 500 | 32.4 |
| Mn2 | Mississippi | nonchilled | 675 | 31.1 |
| Mn2 | Mississippi | nonchilled | 1000 | 31.5 |
| Mn3 | Mississippi | nonchilled | 95 | 11.3 |
| Mn3 | Mississippi | nonchilled | 175 | 19.4 |
| Mn3 | Mississippi | nonchilled | 250 | 25.8 |
| Mn3 | Mississippi | nonchilled | 350 | 27.9 |
| Mn3 | Mississippi | nonchilled | 500 | 28.5 |
| Mn3 | Mississippi | nonchilled | 675 | 28.1 |
| Mn3 | Mississippi | nonchilled | 1000 | 27.8 |
| Mc1 | Mississippi | chilled | 95 | 10.5 |
| Mc1 | Mississippi | chilled | 175 | 14.9 |
| Mc1 | Mississippi | chilled | 250 | 18.1 |
| Mc1 | Mississippi | chilled | 350 | 18.9 |
| Mc1 | Mississippi | chilled | 500 | 19.5 |
| Mc1 | Mississippi | chilled | 675 | 22.2 |
| Mc1 | Mississippi | chilled | 1000 | 21.9 |
| Mc2 | Mississippi | chilled | 95 | 7.7 |
| Mc2 | Mississippi | chilled | 175 | 11.4 |
| Mc2 | Mississippi | chilled | 250 | 12.3 |
| Mc2 | Mississippi | chilled | 350 | 13.0 |
| Mc2 | Mississippi | chilled | 500 | 12.5 |
| Mc2 | Mississippi | chilled | 675 | 13.7 |
| Mc2 | Mississippi | chilled | 1000 | 14.4 |
| Mc3 | Mississippi | chilled | 95 | 10.6 |
| Mc3 | Mississippi | chilled | 175 | 18.0 |
| Mc3 | Mississippi | chilled | 250 | 17.9 |
| Mc3 | Mississippi | chilled | 350 | 17.9 |
| Mc3 | Mississippi | chilled | 500 | 17.9 |
| Mc3 | Mississippi | chilled | 675 | 18.9 |
| Mc3 | Mississippi | chilled | 1000 | 19.9 |
library(lme4) mod1 <- lm(uptake ~ Type * Treatment + I(log(conc)) + conc, data = CO2) mod2 <- lmer(uptake ~ Type * Treatment + I(log(conc)) + conc + (1 | Plant), data = CO2)
options(na.action = "na.fail") Max.Vars <- floor(nrow(CO2)/10) Seleccion <- dredge(mod2, m.lim = c(0, Max.Vars))
| (Intercept) | conc | I(log(conc)) | Treatment | Type | Treatment:Type | df | logLik | AICc | delta | weight |
|---|---|---|---|---|---|---|---|---|---|---|
| -57.247 | -0.025 | 17.789 |
|
|
|
8 | -230.705 | 479.331 | 0.000 | 0.963 |
| -55.608 | -0.025 | 17.789 |
|
|
NA | 7 | -235.188 | 485.850 | 6.519 | 0.037 |
| -59.037 | -0.025 | 17.789 | NA |
|
NA | 6 | -241.972 | 497.036 | 17.705 | 0.000 |
| -14.037 | NA | 8.484 |
|
|
|
7 | -241.168 | 497.809 | 18.478 | 0.000 |
| -12.398 | NA | 8.484 |
|
|
NA | 6 | -245.650 | 504.392 | 25.061 | 0.000 |
| -61.937 | -0.025 | 17.789 |
|
NA | NA | 6 | -246.728 | 506.546 | 27.215 | 0.000 |
| -65.367 | -0.025 | 17.789 | NA | NA | NA | 5 | -250.329 | 511.428 | 32.097 | 0.000 |
| -15.827 | NA | 8.484 | NA |
|
NA | 5 | -252.435 | 515.638 | 36.307 | 0.000 |
| -18.727 | NA | 8.484 |
|
NA | NA | 5 | -257.190 | 525.149 | 45.818 | 0.000 |
| -22.157 | NA | 8.484 | NA | NA | NA | 4 | -260.792 | 530.089 | 50.759 | 0.000 |
| 27.621 | 0.018 | NA |
|
|
|
7 | -267.614 | 550.702 | 71.371 | 0.000 |
| 29.260 | 0.018 | NA |
|
|
NA | 6 | -272.096 | 557.284 | 77.953 | 0.000 |
| 25.830 | 0.018 | NA | NA |
|
NA | 5 | -278.881 | 568.530 | 89.200 | 0.000 |
| 22.930 | 0.018 | NA |
|
NA | NA | 5 | -283.636 | 578.041 | 98.710 | 0.000 |
| 19.500 | 0.018 | NA | NA | NA | NA | 4 | -287.238 | 582.982 | 103.651 | 0.000 |
| 35.333 | NA | NA |
|
|
|
6 | -286.019 | 585.128 | 105.798 | 0.000 |
| 36.973 | NA | NA |
|
|
NA | 5 | -289.930 | 590.630 | 111.299 | 0.000 |
| 33.543 | NA | NA | NA |
|
NA | 4 | -296.656 | 601.819 | 122.488 | 0.000 |
| 30.643 | NA | NA |
|
NA | NA | 4 | -301.412 | 611.330 | 131.999 | 0.000 |
| 27.213 | NA | NA | NA | NA | NA | 3 | -305.013 | 616.327 | 136.996 | 0.000 |
BestModel <- get.models(Seleccion, 1)[[1]] broom.mixed::tidy(BestModel)
| effect | group | term | estimate | std.error | statistic |
|---|---|---|---|---|---|
| fixed | NA | (Intercept) | -57.247 | 7.867 | -7.277 |
| fixed | NA | conc | -0.025 | 0.004 | -6.075 |
| fixed | NA | I(log(conc)) | 17.789 | 1.622 | 10.970 |
| fixed | NA | Treatmentchilled | -3.581 | 1.835 | -1.952 |
| fixed | NA | TypeMississippi | -9.381 | 1.835 | -5.112 |
| fixed | NA | Treatmentchilled:TypeMississippi | -6.557 | 2.595 | -2.527 |
| ran_pars | Plant | sd__(Intercept) | 1.769 | NA | NA |
| ran_pars | Residual | sd__Observation | 3.667 | NA | NA |
Cement de MuMInGlobalMod <- lm(Calorias ~ ., data = Cement2)
cor(Cement2[, -1])
| CaAl | SiCa3 | Ca2AlFe | Ca2Si | |
|---|---|---|---|---|
| CaAl | 1.0000000 | 0.2285795 | -0.8241338 | -0.2454451 |
| SiCa3 | 0.2285795 | 1.0000000 | -0.1392424 | -0.9729550 |
| Ca2AlFe | -0.8241338 | -0.1392424 | 1.0000000 | 0.0295370 |
| Ca2Si | -0.2454451 | -0.9729550 | 0.0295370 | 1.0000000 |
nm <- colnames(Cement2[-1]) smat <- abs(cor(Cement2[, -1])) <= 0.7 smat[!lower.tri(smat)] <- NA
| CaAl | SiCa3 | Ca2AlFe | Ca2Si | |
|---|---|---|---|---|
| CaAl | NA | NA | NA | NA |
| SiCa3 | TRUE | NA | NA | NA |
| Ca2AlFe | FALSE | TRUE | NA | NA |
| Ca2Si | TRUE | FALSE | TRUE | NA |
options(na.action = "na.fail") Selected <- dredge(GlobalMod, subset = smat)
| (Intercept) | Ca2AlFe | Ca2Si | CaAl | SiCa3 | df | logLik | AICc | delta | weight |
|---|---|---|---|---|---|---|---|---|---|
| 52.58 | NA | NA | 1.47 | 0.66 | 4 | -28.16 | 69.31 | 0.00 | 0.84 |
| 103.10 | NA | -0.61 | 1.44 | NA | 4 | -29.82 | 72.63 | 3.32 | 0.16 |
| 131.28 | -1.20 | -0.72 | NA | NA | 4 | -35.37 | 83.74 | 14.43 | 0.00 |
| 72.07 | -1.01 | NA | NA | 0.73 | 4 | -40.96 | 94.93 | 25.62 | 0.00 |
| 117.57 | NA | -0.74 | NA | NA | 3 | -45.87 | 100.41 | 31.10 | 0.00 |
| 57.42 | NA | NA | NA | 0.79 | 3 | -46.04 | 100.74 | 31.42 | 0.00 |
| 81.48 | NA | NA | 1.87 | NA | 3 | -48.21 | 105.08 | 35.77 | 0.00 |
| 110.20 | -1.26 | NA | NA | NA | 3 | -50.98 | 110.63 | 41.31 | 0.00 |
| 95.42 | NA | NA | NA | NA | 2 | -53.17 | 111.54 | 42.22 | 0.00 |
options(na.action = "na.fail") Selected <- dredge(GlobalMod, subset = smat, m.lim = c(0, floor(nrow(Cement)/10)))
| (Intercept) | Ca2AlFe | Ca2Si | CaAl | SiCa3 | df | logLik | AICc | delta | weight |
|---|---|---|---|---|---|---|---|---|---|
| 117.57 | NA | -0.74 | NA | NA | 3 | -45.87 | 100.41 | 0.00 | 0.51 |
| 57.42 | NA | NA | NA | 0.79 | 3 | -46.04 | 100.74 | 0.33 | 0.43 |
| 81.48 | NA | NA | 1.87 | NA | 3 | -48.21 | 105.08 | 4.67 | 0.05 |
| 110.20 | -1.26 | NA | NA | NA | 3 | -50.98 | 110.63 | 10.22 | 0.00 |
| 95.42 | NA | NA | NA | NA | 2 | -53.17 | 111.54 | 11.13 | 0.00 |
Paso 1 K-fold
set.seed(2020) ctrl <- trainControl(method = "cv", number = 5) Modelo <- train(mpg ~ hp, data = mtcars, method = "lm", trControl = ctrl) DF <- Modelo$resample DF <- DF %>% select(Rsquared, Resample)
| Rsquared | Resample |
|---|---|
| 0.845 | Fold1 |
| 0.921 | Fold2 |
| 0.603 | Fold3 |
| 0.832 | Fold4 |
| 0.783 | Fold5 |
form1 <- "mpg ~ hp" form2 <- "mpg ~ hp + I(hp^2)" form3 <- "mpg ~ hp + I(hp^2) + I(hp^3)" form4 <- "mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4)" form5 <- "mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4) + I(hp^5)" form6 <- "mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4) + I(hp^5) + I(hp^6)" forms <- list(form1, form2, form3, form4, form5, form6) K = (2:7) ctrl <- trainControl(method = "cv", number = 5)
set.seed(2020)
Tests <- forms %>% map(~train(as.formula(.x),
data = mtcars, method = "lm",
trControl = ctrl)) %>% map(~as.data.frame(.x$resample)) %>%
map(~select(.x, Rsquared)) %>%
map(~summarise_all(.x, funs(mean,
sd), na.rm = T)) %>% map2(.y = forms,
~mutate(.x, model = .y)) %>%
reduce(bind_rows) %>% mutate(K = K) %>%
arrange(desc(mean))
| mean | sd | model | K |
|---|---|---|---|
| 0.808 | 0.116 | mpg ~ hp + I(hp^2) + I(hp^3) | 4 |
| 0.797 | 0.119 | mpg ~ hp | 2 |
| 0.786 | 0.128 | mpg ~ hp + I(hp^2) | 3 |
| 0.705 | 0.326 | mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4) + I(hp^5) | 6 |
| 0.656 | 0.374 | mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4) | 5 |
| 0.618 | 0.302 | mpg ~ hp + I(hp^2) + I(hp^3) + I(hp^4) + I(hp^5) + I(hp^6) | 7 |
A <- glm(weight ~ Time + Diet, family = poisson) B <- glm(weight ~ Time * Diet, family = poisson) C <- glm(weight ~ Time + Time:Diet, family = poisson)
library(lme4)
ChickPoissMM1 <- glmer(weight ~ Time + Diet + (1 | Chick), family = poisson,
data = ChickWeight)
ChickPoissMM2 <- glmer(weight ~ Time + Time:Diet + (1 | Chick),
family = poisson, data = ChickWeight)
ChickPoissMM3 <- glmer(weight ~ Time + Time * Diet + (1 | Chick),
family = poisson, data = ChickWeight)
| effect | group | term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|---|---|
| fixed | NA | (Intercept) | 3.84 | 0.03 | 121.74 | 0 |
| fixed | NA | Time | 0.07 | 0.00 | 63.72 | 0 |
| fixed | NA | Time:Diet2 | 0.01 | 0.00 | 4.99 | 0 |
| fixed | NA | Time:Diet3 | 0.02 | 0.00 | 12.59 | 0 |
| fixed | NA | Time:Diet4 | 0.01 | 0.00 | 5.91 | 0 |
| ran_pars | Chick | sd__(Intercept) | 0.21 | NA | NA | NA |
exp(3.83 + 10 * 0.07 + 0.02)
## [1] 94.63241
exp(3.83 + 10 * 0.07 + (10 * 0.02))
## [1] 113.2956
3.83 + 10 * 0.07 + (10 * 0.02)
## [1] 4.73
A <- glm(weight ~ Time + Diet, family = poisson) B <- glm(weight ~ Time * Diet, family = poisson) C <- glm(weight ~ Time + Time:Diet, family = poisson)
| term | estimate | std.error | statistic | p.value |
|---|---|---|---|---|
| (Intercept) | 3.70 | 0.01 | 346.30 | 0 |
| Time | 0.08 | 0.00 | 125.25 | 0 |
| Diet2 | 0.15 | 0.01 | 13.69 | 0 |
| Diet3 | 0.30 | 0.01 | 29.46 | 0 |
| Diet4 | 0.26 | 0.01 | 24.88 | 0 |