11/08, 2020

Bienvenida

Curso Análisis y manipulación de datos en R

Primeros pasos

  • ¿Quien no ha usado nunca R? Swirl
  • Evaluación sencilla (Informes reproducibles + presentación reproducible)
  • Evaluación por pares (Quien evalua a los evaluadores)
  • Mucho trabajo personal guiado
  • Pagina donde esta todo el curso

Como se organizan los datos en R

Estructura de datos

  • Vector: Un conjunto lineal de datos (secuencia génica, serie de tiempo)
  • Matrix: Una tabla con solo números
  • Data Frame: Una tabla donde cada columna tiene un tipo de datos (estándar dorado)
  • List: Aqui podemos meter lo que queramos

Vector

  • Secuencia lineal de datos
  • Pueden ser de muchos tipos (numéricos, de carácteres, lógicos, etc.)
  • Ejemplo data(uspop)
  • para crear uno c(1,4,6,7,8)
  • para subsetear un vector se pone el índice entre []
  • uspop[4], uspop[2:10], uspop[c(3,5,8)]

Data Frame

  • Una tabla, cada columna un tipo de datos (Numérico, lógico, etc)
  • Cada columna un vector
  • Ejemplo data(iris)
  • Para subsetear data.frame[filas,columnas]
  • Ejemplos iris[,3], iris[“Petal.Length”], iris[2:5,c(1,5)], iris$Petal.Length

Principios de Tidydata

Tidy Data

  • Cada columna una variable
  • Cada fila una observación

untidy data

untidy data

untidy data

  • Tablas de contingencia
  • Ejemplo data(HairEyeColor)
Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Forma tidy

Hair Eye Sex Freq
Black Brown Male 32
Brown Brown Male 53
Red Brown Male 10
Blond Brown Male 3
Black Blue Male 11
Brown Blue Male 50
Red Blue Male 10
Blond Blue Male 30
Black Hazel Male 10
Brown Hazel Male 25
Red Hazel Male 7
Blond Hazel Male 5
Black Green Male 3
Brown Green Male 15
Red Green Male 7
Blond Green Male 8
Black Brown Female 36
Brown Brown Female 66
Red Brown Female 16
Blond Brown Female 4
Black Blue Female 9
Brown Blue Female 34
Red Blue Female 7
Blond Blue Female 64
Black Hazel Female 5
Brown Hazel Female 29
Red Hazel Female 7
Blond Hazel Female 5
Black Green Female 2
Brown Green Female 14
Red Green Female 7
Blond Green Female 8

Trabajemos tidy

dplyr

  • Paquete con pocas funciones muy poderosas para ordenar datos
  • Parte del tidyverse

  • group_by (agrupa datos)
  • summarize (resume datos agrupados)
  • filter (Encuentra filas con ciertas condiciones)
  • select junto a starts_with, ends_with o contains
  • mutate (Genera variables nuevas)
  • %>% pipeline
  • arrange ordenar

summarize y group_by

  • group_by reune observaciones según una variable
  • summarize resume una variable
library(tidyverse)
Summary.Petal <- summarize(iris, Mean.Petal.Length = mean(Petal.Length), 
    SD.Petal.Length = sd(Petal.Length))
Mean.Petal.Length SD.Petal.Length
3.758 1.765298

summarize y group_by (continuado)

Summary.Petal <- group_by(iris, Species)
Summary.Petal <- summarize(Summary.Petal, Mean.Petal.Length = mean(Petal.Length), 
    SD.Petal.Length = sd(Petal.Length))
Species Mean.Petal.Length SD.Petal.Length
setosa 1.462 0.1736640
versicolor 4.260 0.4699110
virginica 5.552 0.5518947

summarize y group_by (continuado)

  • Pueden agrupar por más de una variable a la vez
data("mtcars")
Mtcars2 <- group_by(mtcars, am, cyl)
Consumo <- summarize(Mtcars2, Consumo_promedio = mean(mpg), 
    desv = sd(mpg))
am cyl Consumo_promedio desv
0 4 22.90000 1.4525839
0 6 19.12500 1.6317169
0 8 15.05000 2.7743959
1 4 28.07500 4.4838599
1 6 20.56667 0.7505553
1 8 15.40000 0.5656854

Dudas?

mutate

  • Crea variables nuevas
DF <- mutate(iris, Petal.Sepal.Ratio = Petal.Length/Sepal.Length)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Petal.Sepal.Ratio
5.8 4.0 1.2 0.2 setosa 0.21
4.7 3.2 1.6 0.2 setosa 0.34
5.1 3.8 1.9 0.4 setosa 0.37
5.2 2.7 3.9 1.4 versicolor 0.75
6.4 2.9 4.3 1.3 versicolor 0.67
5.5 2.5 4.0 1.3 versicolor 0.73
6.5 3.0 5.8 2.2 virginica 0.89
6.0 2.2 5.0 1.5 virginica 0.83
6.1 2.6 5.6 1.4 virginica 0.92
5.9 3.0 5.1 1.8 virginica 0.86

Pipeline (%>%)

  • Para realizar varias operaciones de forma secuencial
  • sin recurrir a parentesis anidados
  • sobrescribir multiples bases de datos
x <- c(1, 4, 6, 8)
y <- round(mean(sqrt(log(x))), 2)
  • Que hice ahí?
x <- c(1, 4, 6, 8)
y <- x %>% log() %>% sqrt() %>% mean() %>% round(2)
## [1] 0.99

Pipeline (%>%)

  • Muchos objetos intermedios
DF <- mutate(iris, Petal.Sepal.Ratio = Petal.Length/Sepal.Length)
BySpecies <- group_by(DF, Species)
Summary.Byspecies <- summarize(BySpecies, MEAN = mean(Petal.Sepal.Ratio), 
    SD = sd(Petal.Sepal.Ratio))
Species MEAN SD
setosa 0.2927557 0.0347958
versicolor 0.7177285 0.0536255
virginica 0.8437495 0.0438064

Pipeline (%>%)

  • Con pipe
Summary.Byspecies <- summarize(group_by(mutate(iris, 
    Petal.Sepal.Ratio = Petal.Length/Sepal.Length), 
    Species), MEAN = mean(Petal.Sepal.Ratio), SD = sd(Petal.Sepal.Ratio))
Species MEAN SD
setosa 0.2927557 0.0347958
versicolor 0.7177285 0.0536255
virginica 0.8437495 0.0438064

Pipeline (%>%) otro ejemplo

library(tidyverse)
MEAN <- iris %>% group_by(Species) %>% summarize_all(.funs = list(Mean = mean, 
    SD = sd))
Species Sepal.Length_Mean Sepal.Width_Mean Petal.Length_Mean Petal.Width_Mean Sepal.Length_SD Sepal.Width_SD Petal.Length_SD Petal.Width_SD
setosa 5.006 3.428 1.462 0.246 0.3524897 0.3790644 0.1736640 0.1053856
versicolor 5.936 2.770 4.260 1.326 0.5161711 0.3137983 0.4699110 0.1977527
virginica 6.588 2.974 5.552 2.026 0.6358796 0.3224966 0.5518947 0.2746501

Mas dudas?

Filter

  • Selecciona según una o más variables
simbolo significado simbolo_cont significado_cont
> Mayor que != distinto a
< Menor que %in% dentro del grupo
== Igual a is.na es NA
>= mayor o igual a !is.na no es NA
<= menor o igual a | & o, y

Ejemplos de filter agregando a lo anterior

data("iris")
DF <- iris %>% filter(Species != "versicolor") %>% 
    group_by(Species) %>% summarise_all(mean)
Species Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
virginica 6.588 2.974 5.552 2.026

Ejemplos de filter

DF <- iris %>% filter(Petal.Length >= 4 & Sepal.Length >= 
    5) %>% group_by(Species) %>% summarise(N = n())
Species N
versicolor 39
virginica 49

Más de una función

data("iris")
DF <- iris %>% filter(Species != "versicolor") %>% 
    group_by(Species) %>% summarise_all(.funs = list(Mean = mean, 
    SD = sd))
Species Sepal.Length_Mean Sepal.Width_Mean Petal.Length_Mean Petal.Width_Mean Sepal.Length_SD Sepal.Width_SD Petal.Length_SD Petal.Width_SD
setosa 5.006 3.428 1.462 0.246 0.3524897 0.3790644 0.1736640 0.1053856
virginica 6.588 2.974 5.552 2.026 0.6358796 0.3224966 0.5518947 0.2746501

Select

  • Selecciona columnas dentro de un data.frame, se pueden restar
iris %>% group_by(Species) %>% select(Petal.Length, 
    Petal.Width) %>% summarize_all(mean)
iris %>% group_by(Species) %>% select(-Sepal.Length, 
    -Sepal.Width) %>% summarize_all(mean)
iris %>% group_by(Species) %>% select(contains("Petal")) %>% 
    summarize_all(mean)
iris %>% group_by(Species) %>% select(-contains("Sepal")) %>% 
    summarize_all(mean)
Species Petal.Length Petal.Width
setosa 1.462 0.246
versicolor 4.260 1.326
virginica 5.552 2.026

Ejercicios

Ejercicios

Casos_Activos <- read_csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto19/CasosActivosPorComuna_std.csv")

Usando la base de datos del repositorio del ministerio de ciencias, genera un dataframe que responda lo siguiente:

  • ¿Que proporción de las comunas ha tenido en algun momento mas de 50 casos por cada 100.000 habitantes?
  • Genera un dataframe, donde aparezca para cada comuna que haya tenido sobre 50 casos por cada 100.000 habitantes, cuantos días ha tenido sobre ese valor.
  • Genera una tabla de cuales comunas han tenido sobre 50 casos por cada 100.000 habitantes y de esas comunas crea una variable que sea la prevalencia máxima de dicha comuna.

Bonus (Esto requiere investigar no basta con lo que aprendimos)

  • Ve cuales son las 10 comunas que han tenido la mayor mediana de prevalencia, para cada una de estas 10 comunas, genera una tabla con la mediana, prevalencia máxima y fecha en que se alcanzó la prevalencia máxima

  • Nos vemos a las 12:45

Para la otra clase, es necesario:

  • Crearse cuenta de github
  • Instalar los paquetes knitr, rmarkdown y kableExtra