11/08, 2020
Primeros pasos
| Brown | Blue | Hazel | Green | |
|---|---|---|---|---|
| Black | 32 | 11 | 10 | 3 |
| Brown | 53 | 50 | 25 | 15 |
| Red | 10 | 10 | 7 | 7 |
| Blond | 3 | 30 | 5 | 8 |
| Hair | Eye | Sex | Freq |
|---|---|---|---|
| Black | Brown | Male | 32 |
| Brown | Brown | Male | 53 |
| Red | Brown | Male | 10 |
| Blond | Brown | Male | 3 |
| Black | Blue | Male | 11 |
| Brown | Blue | Male | 50 |
| Red | Blue | Male | 10 |
| Blond | Blue | Male | 30 |
| Black | Hazel | Male | 10 |
| Brown | Hazel | Male | 25 |
| Red | Hazel | Male | 7 |
| Blond | Hazel | Male | 5 |
| Black | Green | Male | 3 |
| Brown | Green | Male | 15 |
| Red | Green | Male | 7 |
| Blond | Green | Male | 8 |
| Black | Brown | Female | 36 |
| Brown | Brown | Female | 66 |
| Red | Brown | Female | 16 |
| Blond | Brown | Female | 4 |
| Black | Blue | Female | 9 |
| Brown | Blue | Female | 34 |
| Red | Blue | Female | 7 |
| Blond | Blue | Female | 64 |
| Black | Hazel | Female | 5 |
| Brown | Hazel | Female | 29 |
| Red | Hazel | Female | 7 |
| Blond | Hazel | Female | 5 |
| Black | Green | Female | 2 |
| Brown | Green | Female | 14 |
| Red | Green | Female | 7 |
| Blond | Green | Female | 8 |
Parte del tidyverse
arrange ordenar
library(tidyverse)
Summary.Petal <- summarize(iris, Mean.Petal.Length = mean(Petal.Length),
SD.Petal.Length = sd(Petal.Length))
| Mean.Petal.Length | SD.Petal.Length |
|---|---|
| 3.758 | 1.765298 |
Summary.Petal <- group_by(iris, Species)
Summary.Petal <- summarize(Summary.Petal, Mean.Petal.Length = mean(Petal.Length),
SD.Petal.Length = sd(Petal.Length))
| Species | Mean.Petal.Length | SD.Petal.Length |
|---|---|---|
| setosa | 1.462 | 0.1736640 |
| versicolor | 4.260 | 0.4699110 |
| virginica | 5.552 | 0.5518947 |
data("mtcars")
Mtcars2 <- group_by(mtcars, am, cyl)
Consumo <- summarize(Mtcars2, Consumo_promedio = mean(mpg),
desv = sd(mpg))
| am | cyl | Consumo_promedio | desv |
|---|---|---|---|
| 0 | 4 | 22.90000 | 1.4525839 |
| 0 | 6 | 19.12500 | 1.6317169 |
| 0 | 8 | 15.05000 | 2.7743959 |
| 1 | 4 | 28.07500 | 4.4838599 |
| 1 | 6 | 20.56667 | 0.7505553 |
| 1 | 8 | 15.40000 | 0.5656854 |
DF <- mutate(iris, Petal.Sepal.Ratio = Petal.Length/Sepal.Length)
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | Petal.Sepal.Ratio |
|---|---|---|---|---|---|
| 5.8 | 4.0 | 1.2 | 0.2 | setosa | 0.21 |
| 4.7 | 3.2 | 1.6 | 0.2 | setosa | 0.34 |
| 5.1 | 3.8 | 1.9 | 0.4 | setosa | 0.37 |
| 5.2 | 2.7 | 3.9 | 1.4 | versicolor | 0.75 |
| 6.4 | 2.9 | 4.3 | 1.3 | versicolor | 0.67 |
| 5.5 | 2.5 | 4.0 | 1.3 | versicolor | 0.73 |
| 6.5 | 3.0 | 5.8 | 2.2 | virginica | 0.89 |
| 6.0 | 2.2 | 5.0 | 1.5 | virginica | 0.83 |
| 6.1 | 2.6 | 5.6 | 1.4 | virginica | 0.92 |
| 5.9 | 3.0 | 5.1 | 1.8 | virginica | 0.86 |
x <- c(1, 4, 6, 8) y <- round(mean(sqrt(log(x))), 2)
x <- c(1, 4, 6, 8) y <- x %>% log() %>% sqrt() %>% mean() %>% round(2)
## [1] 0.99
DF <- mutate(iris, Petal.Sepal.Ratio = Petal.Length/Sepal.Length)
BySpecies <- group_by(DF, Species)
Summary.Byspecies <- summarize(BySpecies, MEAN = mean(Petal.Sepal.Ratio),
SD = sd(Petal.Sepal.Ratio))
| Species | MEAN | SD |
|---|---|---|
| setosa | 0.2927557 | 0.0347958 |
| versicolor | 0.7177285 | 0.0536255 |
| virginica | 0.8437495 | 0.0438064 |
Summary.Byspecies <- summarize(group_by(mutate(iris,
Petal.Sepal.Ratio = Petal.Length/Sepal.Length),
Species), MEAN = mean(Petal.Sepal.Ratio), SD = sd(Petal.Sepal.Ratio))
| Species | MEAN | SD |
|---|---|---|
| setosa | 0.2927557 | 0.0347958 |
| versicolor | 0.7177285 | 0.0536255 |
| virginica | 0.8437495 | 0.0438064 |
library(tidyverse)
MEAN <- iris %>% group_by(Species) %>% summarize_all(.funs = list(Mean = mean,
SD = sd))
| Species | Sepal.Length_Mean | Sepal.Width_Mean | Petal.Length_Mean | Petal.Width_Mean | Sepal.Length_SD | Sepal.Width_SD | Petal.Length_SD | Petal.Width_SD |
|---|---|---|---|---|---|---|---|---|
| setosa | 5.006 | 3.428 | 1.462 | 0.246 | 0.3524897 | 0.3790644 | 0.1736640 | 0.1053856 |
| versicolor | 5.936 | 2.770 | 4.260 | 1.326 | 0.5161711 | 0.3137983 | 0.4699110 | 0.1977527 |
| virginica | 6.588 | 2.974 | 5.552 | 2.026 | 0.6358796 | 0.3224966 | 0.5518947 | 0.2746501 |
| simbolo | significado | simbolo_cont | significado_cont |
|---|---|---|---|
| > | Mayor que | != | distinto a |
| < | Menor que | %in% | dentro del grupo |
| == | Igual a | is.na | es NA |
| >= | mayor o igual a | !is.na | no es NA |
| <= | menor o igual a | | & | o, y |
data("iris")
DF <- iris %>% filter(Species != "versicolor") %>%
group_by(Species) %>% summarise_all(mean)
| Species | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|---|---|---|---|---|
| setosa | 5.006 | 3.428 | 1.462 | 0.246 |
| virginica | 6.588 | 2.974 | 5.552 | 2.026 |
DF <- iris %>% filter(Petal.Length >= 4 & Sepal.Length >=
5) %>% group_by(Species) %>% summarise(N = n())
| Species | N |
|---|---|
| versicolor | 39 |
| virginica | 49 |
data("iris")
DF <- iris %>% filter(Species != "versicolor") %>%
group_by(Species) %>% summarise_all(.funs = list(Mean = mean,
SD = sd))
| Species | Sepal.Length_Mean | Sepal.Width_Mean | Petal.Length_Mean | Petal.Width_Mean | Sepal.Length_SD | Sepal.Width_SD | Petal.Length_SD | Petal.Width_SD |
|---|---|---|---|---|---|---|---|---|
| setosa | 5.006 | 3.428 | 1.462 | 0.246 | 0.3524897 | 0.3790644 | 0.1736640 | 0.1053856 |
| virginica | 6.588 | 2.974 | 5.552 | 2.026 | 0.6358796 | 0.3224966 | 0.5518947 | 0.2746501 |
iris %>% group_by(Species) %>% select(Petal.Length,
Petal.Width) %>% summarize_all(mean)
iris %>% group_by(Species) %>% select(-Sepal.Length,
-Sepal.Width) %>% summarize_all(mean)
iris %>% group_by(Species) %>% select(contains("Petal")) %>%
summarize_all(mean)
iris %>% group_by(Species) %>% select(-contains("Sepal")) %>%
summarize_all(mean)| Species | Petal.Length | Petal.Width |
|---|---|---|
| setosa | 1.462 | 0.246 |
| versicolor | 4.260 | 1.326 |
| virginica | 5.552 | 2.026 |
Casos_Activos <- read_csv("https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto19/CasosActivosPorComuna_std.csv")
Usando la base de datos del repositorio del ministerio de ciencias, genera un dataframe que responda lo siguiente:
Ve cuales son las 10 comunas que han tenido la mayor mediana de prevalencia, para cada una de estas 10 comunas, genera una tabla con la mediana, prevalencia máxima y fecha en que se alcanzó la prevalencia máxima
Nos vemos a las 12:45